60^2+x^2=61^3

Simple and best practice solution for 60^2+x^2=61^3 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 60^2+x^2=61^3 equation:



60^2+x^2=61^3
We move all terms to the left:
60^2+x^2-(61^3)=0
We add all the numbers together, and all the variables
x^2-223381=0
a = 1; b = 0; c = -223381;
Δ = b2-4ac
Δ = 02-4·1·(-223381)
Δ = 893524
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{893524}=\sqrt{4*223381}=\sqrt{4}*\sqrt{223381}=2\sqrt{223381}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{223381}}{2*1}=\frac{0-2\sqrt{223381}}{2} =-\frac{2\sqrt{223381}}{2} =-\sqrt{223381} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{223381}}{2*1}=\frac{0+2\sqrt{223381}}{2} =\frac{2\sqrt{223381}}{2} =\sqrt{223381} $

See similar equations:

| 6x-5=x+8+3x+13 | | 60^2+x^2=61^1 | | (5+9i)(-3-2i)=0 | | 11+3n=2 | | 6/5n=28 | | x6+3=9 | | b/9-11=-10 | | 6n-9+5n+13=360 | | 4.2.1/42=7/t | | 2(x–10)=4 | | 1y-3y=y | | -4t^2+28t+0=0 | | 10v=0,00000000001 | | -2(-7y+4)=20 | | 34+5/2y-1/2y=3 | | -4.9x=15.68 | | 2w2−9w+3=-4w | | m−57=11 | | 10v=100.000 | | 3x+8=3×+ | | (7x-10)+(6x-5)=90 | | -3x+10=5x+-1 | | x/7–1=1 | | 3x+13=6x-5+x+8 | | y-2/5=-9 | | 5/9x=22 | | 4f+2=6f-12 | | 2x+8=6-4 | | 8x+20=5x-4 | | (6y−18)=20 | | |4x|+6=22 | | 3/4=m+4/1​ |

Equations solver categories